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Abstract

Recently we have obtained, on the basis of a group approach to quantization, a BargmaJln-

Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized BaxgmaJln

transform relating Fock wave functions <_ztu _ and a set of relativistic Hermite polynomials
HN(x), (N = mc2/h_}. Nevertheless, the relativistic creation and a_nihilation operators

satisfy typical relativistic commutation relations [_,2t] _ Energy (an SL(2, R) algebra).

Here we find higher-order polarization operators on the SL(2, R) group, providing canonic,d

creation and manihilation operators satisfying [h, h_] = i, the eigenstates of which are "true"
coherent states.

1 Group Quantization and the Relativistic Harmonic Os-

cillator (RHO) in the Bargmann-Fock-like realization.

The quantization of relativistic systems in a manifestly covariant way requires the use of com-

mutation relation of the form [&,ib] _ Energy, which means a deviation from the canonical rules.

If the Hamiltonian, _ and i5 close a Lie algebra, it is possible to resort to some kind of group

quantization method, i.e. some technique of obtaining unitary irreducible representations of a

group the Lie algebra of which coincides with the Poisson algebra of the physical system. In the

present case there is a Lie algebra, a central extension of 5'L(2, R) (SO(3, 2) in 3+1 dimensions):

[/_, _] = -i--/_,m [/_'/_1 = irnw2hS:' [_'_1 = ih(i + P_), _ (1)

which reproduces the Poincax6 algebra under the w _ 0 limit and the Newton (non-relativistic

harmonic oscillator) algebra when c _ oc and that, therefore, earns to be considered as the

algebra of a relativistic harmonic oscillator.
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Then, our starting point will be a central pseudo-extension of the group SL(2, R), denoted by

SL(2, R)_U(1) [1], whose coboundary is generated by a function which is an integer power of the

parameter of the Cartan subgroup. The precise techniques of the group-quantization procedure

[2] will be explained on the way.

The G = SL(2, R)@U(1) group law is:

z ,,)(z*z',_-2 + z"z,1_)z" = z'7/-2+zx'+N(l+

Z*

z'" : z'*. _+ z'x' + N(l + _)(zz'*'_ + z'z'" _)

r/" = _[ /1+_' /l+t¢ , _/ 2 _/ 2 /z'z* z'*z ,. '_]+ -. ,,)j
¢,,= ¢,¢( ,, ,-, -,)-_u,

where

_, 2ZZ*t¢ = 1+_

1 (z.z,rt_2 + z,.zr/2 )x" = x'x + _

mc_. It must be noted that N is quantizedand z E C, 7/c U(1) c SL(2,R),¢ E U(1) and N = n_

(N = 1,3/2, 2, 5/2, ...) on SL(2, R) but a positive number on the Universal covering group.

The coboundary

A = (r/"n'-'7/-')-2N : SL(2, R) x SL(2, R) _ U(1), (3)

which is generated by

TI-2N : SL(2, R) ---*U(1), (4)

realizes a pseudo-extension. We say that A is a pseudo-cocycle and realizes a pseudo-extension

rather than a trivial cocycle (coboundary) realizing a trivial extension because in t;he c _ oz limit,

(r/"q'-_/-_) -2N goes to a true cocycle on the non-relativistic harmonic oscillator (Newton) group

(see [3] for a general study!of the contraction process under which a true cocycle is generated by
a coboundary), i

Group quantization uses the (exponential of the) right-invariant vector fields, which act on

U(1)-equivariant complex functions on (_ as ordinary derivatives, to define a group representa-

tion (Bohr-Sormnerfeld quantization). This representation is reducible, as can be stated by the

existence of non-trivial operators (all the left-invariant vector fields) commuting with the repre-

sentation.

The full quantization is achieved by reducing this representation in a way compatible with the

action of right vector fields. The reduced Hilbert space is made of complex functions • on G such

that

¢(¢, g) = ¢. _(g) , ¢ e u(1),g _ G
)_L_ = 0 , V)( c_p
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wherea Polarization P is a maximal left subalgebracontainingthe generatorsin the kernelof A

and excluding the central generator -- = X_ of U(1).

The left- and right-invariant vector fields are:

(.0)0 iz* zrl-_q_'_ = XOzz+2N(l+x)

(0)0 iz _r]-_2 _. = _-bT. 2N(1+ ,0

a o8_ = i.-& 2iz + 2iZ'oz--:

i_O = __x_ = o¢--'

iz*

l+x

iz
+

l+x

(5)

_-2 [(1 +_)_ 02_- (1+_) 2 Oz +

7/2 [(1Jf_ - (1 + _)

- 0
Xff = i_o _

0

2g = i_g( - z.

+ _)2 0
2 Oz*

J[- ----

2"2O ]z-- z7I + iz*--
N Oz" N

N Oz + z_ z71 - izE

The operators are

_-2_, i f(R=if([_ 1_t - _ 2 ff , [1- _. _ .J - #_ _ ,

where r/= e i° and 0 = _, with the commutation relations
1

~L
A polarization is given by 7:' =< X,, )(_ >, with solutions

^

=i+Nt/

= g CaW n [Z, 2;*)

1 I (2N+ n-1)! _/2N--0N(z'z*) = rr_n.V (2N-1)!(2N)"V 2N ,
which constitute the Fock-Bargmann-like space with the group invariant measure a_a.______2"1

The relativistic Fock space is given by:

< 010>= 1, I_>= (_t)_l° > ,
_/n! n--1 sl-I,=, (1 + _)

1In reality the measure on the whole group is azaz'a............._ebut the time variable (or 0) can be factorized out.
tg

(6)

(7)

(8)

(9)

(10)
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_7 _'t, -- ]xl_ln > = _.(1+ -_-jt-- 1>

_/_ n In+l > (11)

2 Relativistic coherent states (RCS).

In the group-quantization scheme, the coherent states (generalizing the standard non-relativistic

coherent states [4]), as well as the waw • functions given above, are defined by mean of infinitesimal

relations (differential polarization equations), rather than a finite group action on the vacuum

associated with a previously given representation of the group [5,6] (see [7,8,9] for a more general

study of overcomplete families of satat,!s non-necessarily associated with groups). They are defined

simply as:
N*tz >- E ¢= (z,z*)l_ > _ ¢_(z,z')=< zln > (12)

The associated (time-independent) wave functions < z'lz >- @=(z') correspond to the choice

c, - c=(z) = ¢_(z,=*) i= _(z').
The RCS are identified with the generalized coherent states oil the unit complex disk [5] once

2 = C), has been made, where D is the unit complexthe change of variables ZD = Vf_y_ C D (z E

disk.

The expectation values of _ and k_ in the coherent states are < _ >- _<z[=> = z and

< _ >= z*, making the Ivariables z, z* E C specially suitable to describe the _3argmann-Fock-

like representation. Defining the operators k and/_ in the usual way, i.e.

_/ fi ('£-t-_/ ' /_=_/_(_'_-_/ (13)_=

we get < k >= x , < /_ >= p, where x and p are defined in the same way, constituting the

phase-space coordinates for Anti-deSitter space-time.

Repeating the group quantization in the new variables we obtain the x-representation in terms

of the relativistic Hermite Polynomials [10]. Both representations are related through the Rela-

tivistic Bargmann transform [11], the kernel of which is nothing other than the configuration-space

wave function of the coherent states [z > defined above:

<XIz>=CN(_-_)-NaN[1.+_'_]

where

-N

mv/_

V?2Z c_ ] ¢a32x 2

So ---- x _, a--Vl+

"='- g

(14)

(15)
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In the non-relativistic limit we regain the usual coherent states in configuration space:

(16)

The uncertainty relations for the operators :_ and [, are:

h/2 1 1 1

A&AIS=_Va +-_--f-_[4[zl'-(z2+z'2)]>_-_hx=-_]<[&,[9]>l (17)

The equality holds for z = Iz[e i'_'_, i.e. z C R, defining the so-called "intelligent states", but only

for z = 0 (the vacuum) we reach the absolute minimum (see [12] for the calculations in the unit

Disk).

3 Canonical (higher-order) creation and annihilation op-

erators: canonical, relativistic coherent states.

The definition of polarization in group quantization can be generalized so as to admit operators

in the left enveloping algebJca. This generalization has been already exploited in fi_ding a position

operator for the free relativistic particle [13] (as well as in solving anomalous problems [2]). In the

present case it also makes sense to look for basic operators satisfying canonical (versus manifestly

covariant) commutation relations. Let us then seek a power series in )_L and )_i,

= X_-+ N _ z _-+""

~L ~L ~ L l/.f(Lf(Lf(L f(L

= X,7 - #X_ X_. N__ z ___ ___.___. + ..., (18)

_(LHO _(LHO ~ L and excludes )(_. The coefficients of the powersuch that T 'H° =< .., , > contains X,

series are determined by the requirement that 7_H° is a polarization and the corresponding right

operators define a unitary action on the wave functions ql which fortunately are the same as before.

More concretely,

=
[f(nHO,f(nHO] = i (19)

The resulting higher-order (canonical) creation and annihilation operator are:

1 3 _t_.; _7 _t_t_;+...-
k.H° _= h=_- 4_V 32-N _ +32N 2

_,t H° -- at =_,t,/ 2
V l+k

(20)

and the energy operator is:

flHO= N(k- 1) = &fa (21)
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2 (it]) and thewhere k - 1 +

operator (_t_).

The commutation relations,

operator _ must be considered as functions of the single

a,at] = i

d =
(22)

have the non-relativistic (canonical) form. Their action on the Fock space is:

al_ > = v_l_- 1 >

atln > = V/_+ 1)In+ 1 >
/:/'°1_ > = nln >,

(23)

which reproduces the non-relativistic harmonic oscillator representation, although it must be

stressed that the estates In > are the same relativistic energy eigenstates as before.

3.1 Canonical coherent states.

It seems quite natural to define canonical coherent states la > as the eigenstates of the canonical
L

annihilation operator, ilia >= ala >, with solutions:

a n

(24)

and define a non-relativistic Bargmann-Fock space in the usual way:

< aln >=< nla >'= e-lal_/2a*" = q_.n.(a )
v_.- (25)

The connection to the relativistic Bargmann-Fock space is given by

• o(=)-< zla > = _ < zln >< "la >= _ 'I'.(z)_'_R(,,)-
'rt, n

1 /2N_-le_l.12/2(12x)-"v l_(2N).(Iaz*_" (26)

1 [1- l(Iz12-az*) (31zl 2 -az')] +...}le-1_12/2_,e -Izl=/2e az" { 1 - -_ -_

The expectation value < al_,]a > defines a classical function z = z(a) relating the variables

a, a* and z, z* as follows:

<al_la>=a_c,,<al iti I_> (27)
n
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the coefficients of the power series of f(u) = ,/1 + _ Then we define:where Cn are Y-K"v

i.124a)= 1+ (28)

Note that although < a I (a_fi)'_ la >#< alh'f'_a'_la >= lal _, any operator of the form /_ =

Oh "_ (or G = hiP0), where [[/H°,O] = 0, defines a classical function F(a) (or G(a)) by the

formula: I

¢(a) = a m _ o,_lal 2'_ , G(a) = a *p y_on]al 2_
n /l

where < alOla >= _,,_ o,_ < a I ([In°) '_ la > •

The functions

_/ 2 a.(z) _/ 2 ._-- --Z _ m_ --Z
a(z) 1 + t¢ 1 +

I (29)

(30)

turn out to be tile Darboux coordinates taking the symplectic form Ft = ±dz Adz* to canonical

form Ft = da A da'.

Finally, we define

(31)

satisfying

[(t,#] = ihi , (32)

and their corresponding classical functions. For these operators we obviously obtain

h

A4A_-= _- (33)

on the [a > states.

4 Final Remarks

The construction of the canonical (higher-order) creation and annihilation operators fit and it in

the I+I-D relativistic harmonic oscillator is a matter of convenience rather than a necessity since
~L

a first-order polarization, the manifestly covariant one, 7:' =< X,,_'L > exists. However, the

situation become quite different for the relativistic harmonic oscillator with spin, at least from

a geometrical point of view. The reason is that the doubly pseudo-extended S0(3,2) (anti-de

Sitter) Lie algebra, containing the commutators

= ihS,s(i + m--@/)) (34)
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accounting for the mass, and the commutator

[J+,;_]=2 +jr) (35)

accounting for the spin, dbes not admit a consistent way (i.e. compatible with the rest of the

symmetry) of defining two sets of first-order conjugated creation-annihilation (_or co-ordinate-

momentum) operators. In other words, the system does not admit a (first-order) polarization

and therefore the Hilbert space of U(1)-equivariant complex functions on the group can be only

partially reduced [14]. The full reduction then requires the introduction of higher-order operators

in the polarization, generalizing those introduced here and accounting for proper intrinsic spin

operators.
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